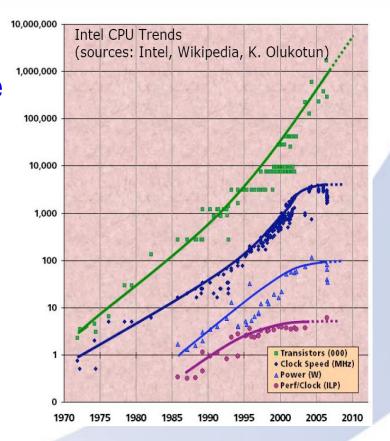
# An Introduction to Basic Research on High-End Processor in China

Guo-jie Li
Institute of Computing Technology, CAS
June 14, 2010

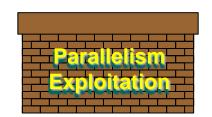



## Agenda

- Background
- Our Research
  - Research Work Overview
  - -Recent Papers
- Future Work



## Processor Scaling Mismatches Moore's Law


- Moore's Law is still in effect
- But processor microarchitecture does not scale well
  - Frequency scaling ends
  - Aggressive ILP exploitation becomes inefficient
  - Power dissipation meets limitation
- → Parallel Microprocessor





## New Theory, New Architecture and New Methodology to Scale Microprocessor Design

- China Basic Research Project
   No. 2005CB321600 (fund: ¥ 35 million)
- Problems Formulation:
   3 Technology Walls for Future High-End Microprocessor

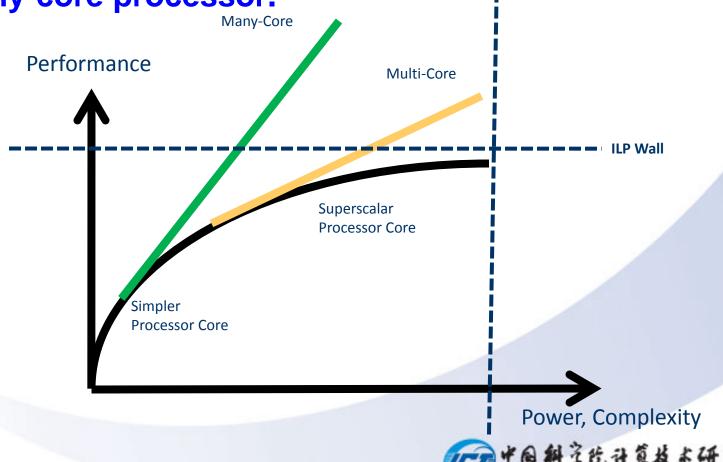


- Information system <u>complexity</u>
- Information processing energy consumption
- Reliable information system








## Agenda

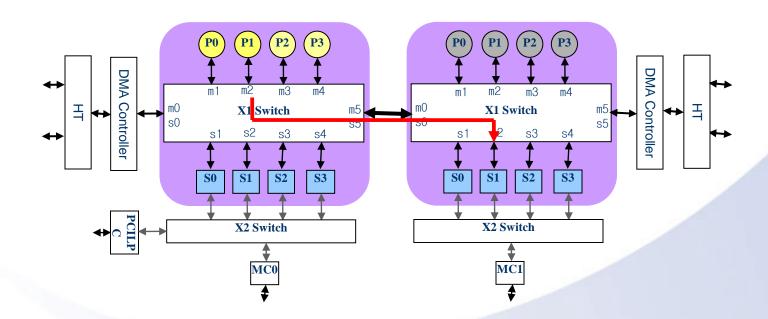
- Background
- Our Research
  - Research Work Overview
  - Recent Papers
- Future Work



#### **Microprocessor Architecture Revolution**

Limited by power and complexity, superscalar processor is being replaced by on-chip multi-core / many-core processor.




#### **Overview of Our Research Work**

- Concluded as "1+2+N"
  - 1: scalable, configurable parallel microarchitecture
  - 2: multi-heavy-core (Loongson-3B) many-light-core (Godson-T)
  - N: a number of new theory, new architecture and new methodology to address the technology walls



## Scalable and Configurable TGAP Architecture (Tera-op Godson Architecture Prototype)

- Scalable parallel microarchitecture
- Configurable on-chip network and memory
- Flexible resource isolation

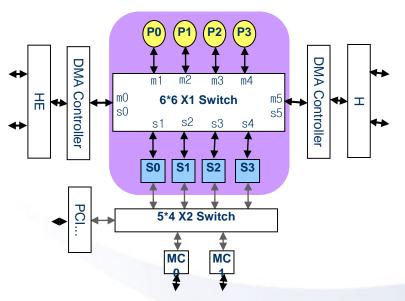


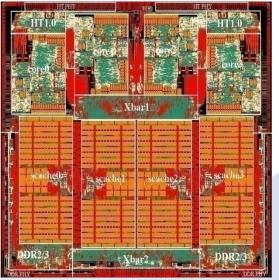


### **Exploiting Polymorphic Parallelism**

Instruction-Level **Parallelism** Godson-3 Heterogenous With Powerful **Many-Core Streaming Unit** With moderate DLP and strong TLP exploitation Godson-T




## Two High-Performance Microprocessor Prototypes

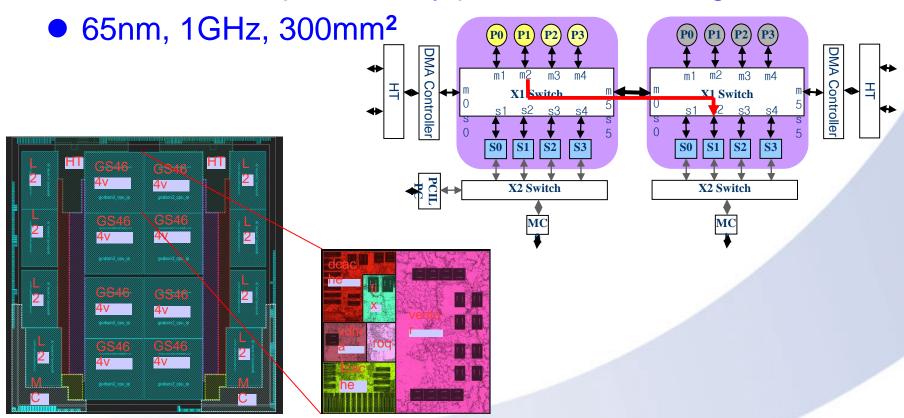

- loongson3: research on efficient heavy-core technology and nanometer IC design, test and verification
  - Loongson 3A: 4-core, 65nm, 1GHz, 16GFLOPS
  - Loongson 3B: 8-core, 65nm, 1GHz, 128GFLOPS
  - Loongson 3C: 16-core, 28nm, 1.5GHz,
    - 384GFLOPS, tape out in 2011
  - Godson-T: research on massively-parallel computing technology
  - 64 tiles, 4 memory controllers, sample(16 tiles) taped out now.
  - New technologies to handle memory latency and bandwidth, reliability, testability, etc.



## Loongson-3A

- 4 four-issue 64-bit heavy-core in a node;
- High throughput I/O and memory controller are integrated;
- 65nm, 425 million transistors, 174mm², 1GHz, 10-watt










## Loongson-3B

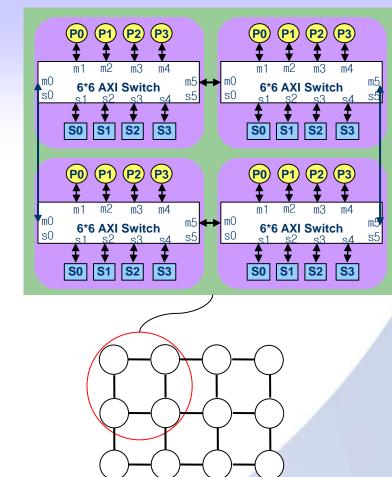
- 2 nodes, total 8 cores
- 128 GFLOPS provided by powerful streaming unit





## Loongson-3C

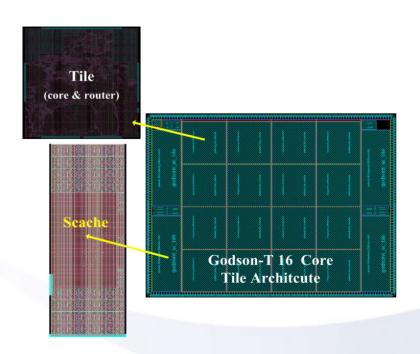
- 4 nodes, 16 cores
- 128 64-bit FMADD units
- 1.5 GHz@32nm, 200mm²
- Peak Performance

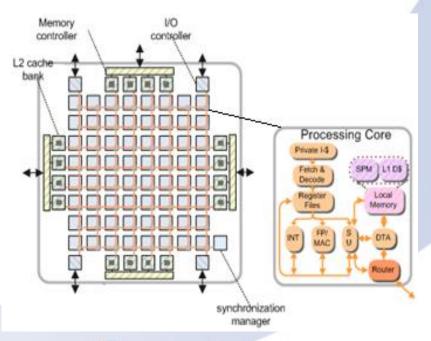

DP: 384 GFLOPS

SP: 768 GFLOPS

– 16-bit: 1.5TOPS

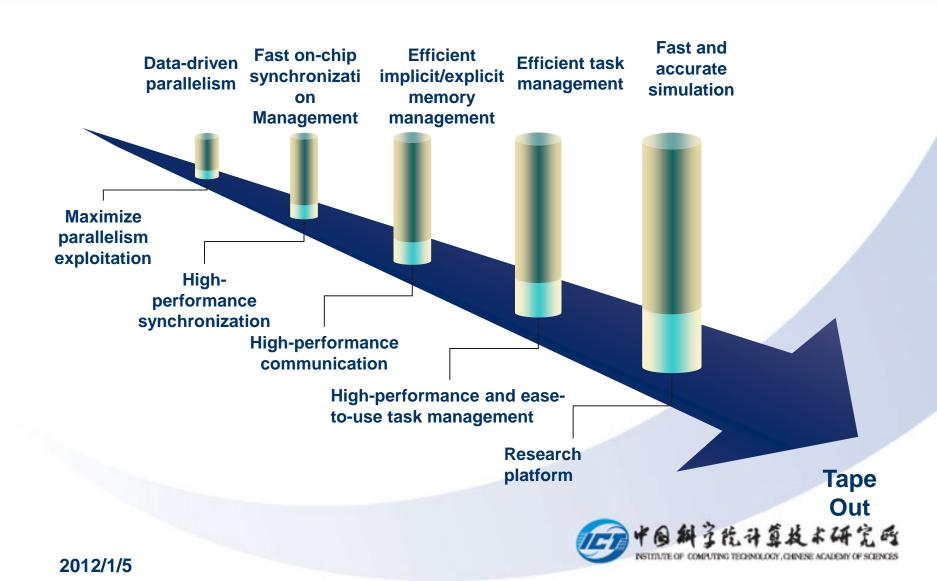
- 8-bit: 3TOPS



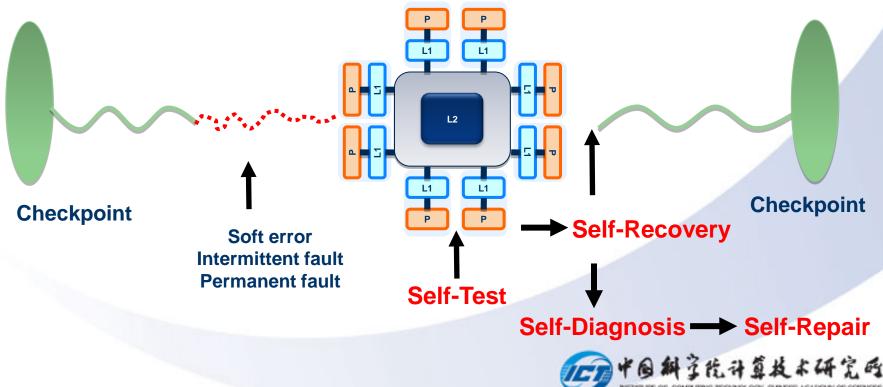



## **Godson-T Many-Core Prototype**

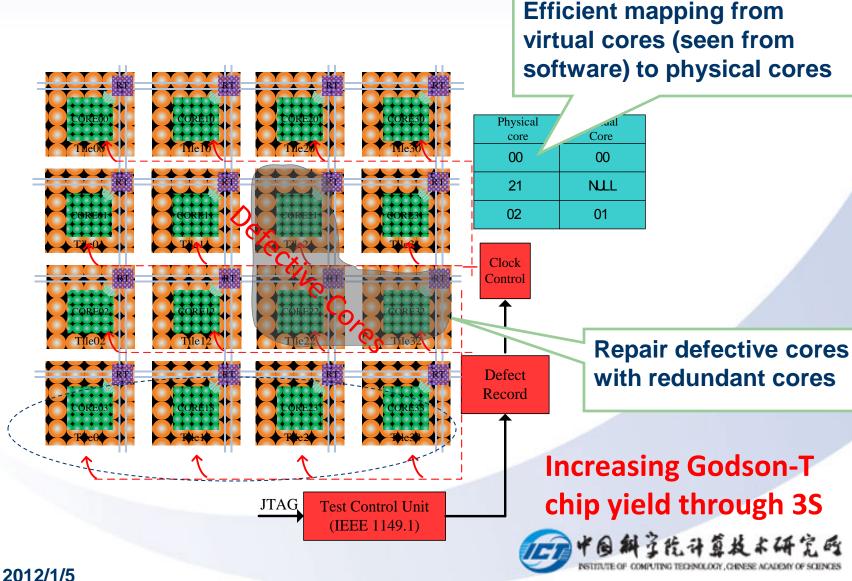

- 64 light-weight processing tiles currently,
   256 tiles in 2015
- 16-tile sample:130nm, 230mm<sup>2</sup>, SMIC
- Target for domain-specific parallel acceleration








#### Godson-T Design and Implementation




#### 3S: Self-Test, Self-Diagnosis, Self-Repair

- Reliable Design for Future Parallel Architecture
- Component failure will be normal in many-core processor, we use 3S to tolerate variety of abnormality including soft errors, intermittent faults and permanent faults. Keep service with 3S!

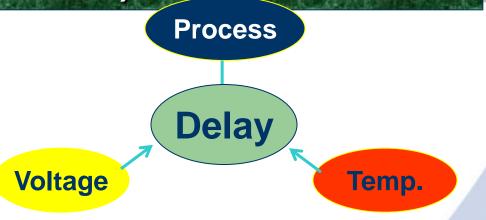


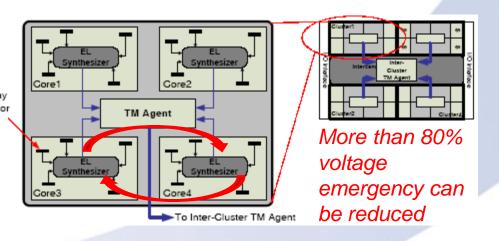
## 3S in Godson-T 16-tile sample



### Agenda

- Background
- Our Research
  - Research Work Overview
  - -Recent Papers
- Future Work

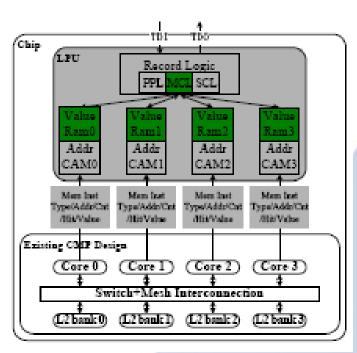




## Recent Papers – Partial Representative List

- Co-optimizing Process, Voltage, and Temperature (PVT) variations in Multicore Processor . ISCA 2010.
- LReplay: A Pending Period Based Deterministic Replay Scheme. ISCA 2010.
- DMA Cache: Using On-Chip Storage to Architecturally Separate I/O Data from CPU Data for Improving I/O Performance, HPCA 2010.
- Evaluating Iterative Optimization Across 1000 Data Sets. PLDI 2010.
- High Performance Comparison-Based Sorting Algorithm on Many-Core GPUs . IPDPS 2010.
- Fast Complete Memory Consistency Verfication, HPCA 2009.
- On Topology Reconfiguration for Defect-Tolerant NoC-Based Homogeneous Manycore Systems. IEEE Trans. On VLSI 2009.
- A unified online Fault Detection scheme via checking of Stability Violation.
   DATE 2009.
- Single-particle 3D Reconstruction from Cryo-Electron Microscopy Images on GPU, ICS 2009.
- Deterministic Diagnostic Pattern Generation (DDPG) for Compound Defects. ITC 2008.
- HMTT: A Platform Independent Full-System Memory Trace Monitoring System. SIGMETRICS 2008.
- A Parallel Dynamic Programming Algorithm on a Multi-core Architecture. SPAA 2007.
- 2012/1/5

# Co-optimizing Process, Voltage, and Temperature (PVT) variations in Multi-core Processor (ISCA 2010)

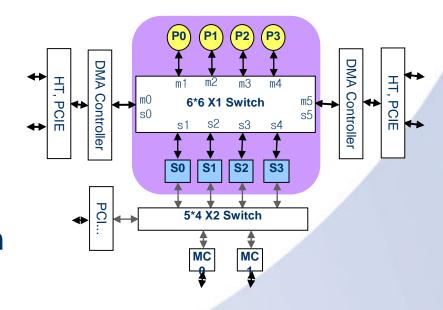
- First work to model process, voltage and temperature variations as a uniform delay variation.
- Efficiently address the fault prediction, detection and diagnosis problems.
- Employ thread migration to prevent 50% voltage emergencies.








## LReplay: A Pending Period Based Deterministic Replay Scheme (ISCA 2010)


- Hardware-based deterministic replay scheme facilitating global clock in a chip
- Result
  - Overall log size of LReplay
     Only generate 0.55B per kiloinstructions,
  - Very low hardware cost and easy to implement





# DMA Cache: Using On-Chip Storage to Architecturally Separate I/O Data from CPU Data for Improving I/O Performance (HPCA 2010)

- High-throughput computing becomes more popular
  - Computation-centric →
     Memory-centric →
     I/O-centric
- I/O-centric microarchitecture
  - Data is transferred between CPU and I/O via on-chip cache rather than memory
  - Applied to Looongson-3 chip, performance of SSD disk is improved by 40%





## Fast Complete Memory Consistency Verification (HPCA 2009)

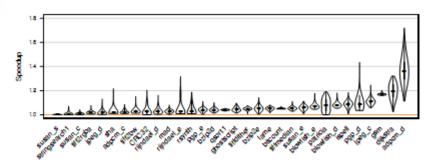
- Propose a novel method that largely reduces the time complexity of processor memory consistency verification.
  - Verification of 16-core Loongson-3 processor
     becomes feasible.

Yunji Chen<sup>1</sup>, Yi Lv<sup>2</sup>, Weiwu Hu<sup>1\*</sup>, Tianshi Chen<sup>3</sup>, Haihua Shen<sup>1</sup>, Pengyu Wang<sup>1</sup>, Hong Pan<sup>2</sup>

<sup>1</sup>Key Laboratory of Computer System and Architecture Institute of Computing Technology, Chinese Academy of Sciences Beijing 100190, P. R. China

> <sup>2</sup>State Key Laboratory of Computer Science Institute of Software, Chinese Academy of Sciences Beijing 100190, P. R. China

<sup>3</sup>Department of Computer Science and Technology University of Science and Technology of China Hefei, Anhui 230027, P. R. China


#### Abstract

The verification of an execution against memory consistency is known to be NP-hard. This paper proposes a novel fast memory consistency verification method by idea fifting a kind of natural partial order: time order. In multiprocessor system with store atomicity, time order restriction exists between two operations whose pending periods are disjoint: the former operation in time order must be observed by the later operation. Based on time order restriction, memory consistency verification is localized: for any operation, both inferring related orders and checking related cycle only need to take bounded operations into acory in multi-processor system, memory subsystem must spend many resources on supporting memory consistency and cache coherence. Therefore, Memory consistency verification is an indispensable part of verifying memory sub-

Researchers have found that the verification of an execution against memory consistency is NP-hard with respect to the number of memory operations [3, 8]. To cope with the problem in practice, there are two kinds of solutions: microarchitecture dependent methods which exploit the help of extra observability in design to bring down the complexity [22, 25, 26], and micro-architecture independent methods which devise polynomial time algorithms that are sound but not necessarily complete [12, 23, 24, 30]. However, micro-

## Evaluating Iterative Optimization Across 1000 Data Sets (PLDI 2010)

- Most iterative optimization studies find the best optimizations on the same data set, which prevents its usage in practice.
- We evaluated the effectiveness of iterative optimization across a large number (1000) of data sets.
- Conclusion
  - Compiler optimizations achieves 86% speedup than ICC (83% for GCC)
  - optimizing programs across data sets much easier than previous anticipation



(a) sorted by average data set-optimal speedup

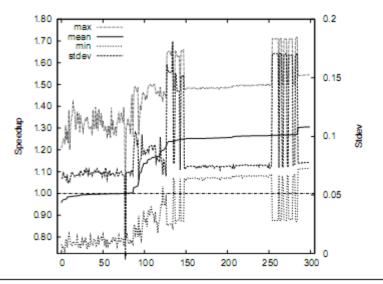



Figure 4. Reactions to compiler optimizations (adpcm\_d).



#### High Performance Algorithm based on Novel **Architecture (SPAA 2007)**

Optimized Dynamic Programming Algorithm is cited by Professor Vigaya Ramachandran (SPAA 2008 and Phd. Thesis

> Algorithms and Data Structures for Cache-efficient Computation: Theory and Experimental Evaluation

Cache-efficient Dynamic Programming Algorithms for Multicores

Rezaul Alam Chowdhury

directed by him)

Viiava Ramachandran

...A parallel algorithm for solving the parenthesis problem which..., but the algorithm is not cache-efficient. A cacheefficient multi-core algorithm for the IBM Cyclops64 processor was given in [25]

m based on Valiant's context-free language recognity algorithm [27] was given for solving the recurrence. A parallel algorithm for solving the parenthesis problem which runs in  $\mathcal{O}\left(n^{\frac{3}{4}}\log n\right)$  time and performs optimal  $\mathcal{O}(n^3)$  work was given in [15], but the algorithm is not cache-efficient. A cache-efficient multicore algorithm for the IBM Cyclops64 processor was given in [25].

#### Dissertation

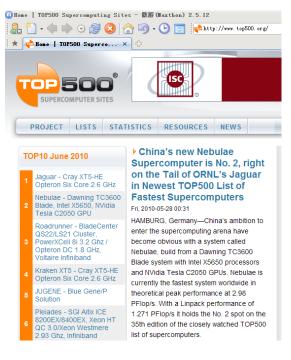
Rezaul Alam Chowdhury, B.Sc.

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

... A similar algorithm for simple-DP is also given in [117], and in [118] the algorithm extended for cache-efficient execution on multicore programming model based on IBM Cyclops64

andary structure prediction [78], matrix chain multiplication permal polygon triangulation and optimal binary search tree construction. A similar algorithm for simple-DP is also given in [117], and in [118] the algorithm is extended for cache-efficient execution on a multicore programming model based on IBM Cyclops64.


The cache-oblivious stencil computation technique presented in [54] can be used as a dynamic programming algorithm for computing the length of a longest common subsequence of two sequences of length n each in  $\mathcal{O}(n^2)$  time,  $\mathcal{O}(n)$  space and  $\mathcal{O}\left(\frac{n^2}{BM}\right)$  I/Os. This method, however, does not compute the subsequence.



## **Research Impact on Top-Tier Conferences**

| Top-Tier<br>Conference | Acceptan<br>ce Rate | # of<br>Mainland<br>Publishin<br>g | # of ICT<br>Publishi<br>ng | Proportion |                   |
|------------------------|---------------------|------------------------------------|----------------------------|------------|-------------------|
| ISCA                   | 18%                 | 9                                  | 5                          | 56%        |                   |
| HPCA                   | 18%                 | 3                                  | 2                          | 67%        | First in Mainland |
| SC                     | 25%                 | 4                                  | 3                          | 75%        | First in Mainland |
| SPAA                   | 30%                 | 1                                  | 1                          | 100%       | First in Mainland |
| ICS                    | 26%                 | 7                                  | 5                          | 71%        | First in Mainland |
| SIGMETRICS             | 18%                 | 4                                  | 3                          | 75%        | First in Mainland |
| PLDI                   | 20%                 | 3                                  | 1                          | 33%        |                   |

## International Impact of ICT





**Dawning Nebulae** Supercomputer holds No. 2 on Top 500 1.271 Petaflops

**Godson-3 introduction** on "Microprocessor"

doesn't appear to go as far toward sife compatibility as Transmeta's processors did, and Transmeta had no legal

NOVEMBER 3. 2001 - MICROPROCESSOR REPORT

Loongson, or "dragon chip," was Tom Halfhill, an analyst at research firm In-Stat, says designed and manufactured in China Godson-3 on MIT "Technology Review"

Videos | Blogs | Community | Magazine | MIT News | Newsletters | Events | HOME COMPUTING WEB | COMMUNICATIONS | ENERGY | MATERIALS | BIOME

Researchers have revealed details of China's latest homegrown

♥\* Favorite

Computing Technology (ICT).

Print

In California last week, Chinese researchers unveiled

details of a microprocessor that they hope will bring

at the Chinese Academy of Sciences' Institute of

China is making a late entry into chip making, admits

Zhiwei Xu, deputy director of ICT. "Twenty years ago

in China, we didn't support R&D for microprocessors,

he said during a presentation last week at the Hot

CPUs [central processing units] are important."

Chips conference, in Palo Alto. "The decision makers

and [Chinese] IT community have come to realize that

personal computing to most ordinary people in China by

2010. The chip, code-named Godson-3, was developed

with government funding by more than 200 researchers

A Chinese Challenge to Intel

A Share a

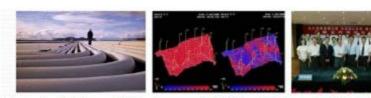
microprocessor.

Enter the dragon: This single-core

central processing unit, known as

By Kate Greene

[1] 2 Next >


V 7 T

| | F₁mail



## Technology Transfer

- Dawning supercomputers
- Occupied 27% in TOP100
   Supercomputer in China (IBM 26%)
- Contributions on oil exploration, national security, ...
- Loongson microprocessors
- Set up Loongson Corp.
   (initial capital: about \$ 30M)
- Low-cost PC in China sell 150K units in Jiangsu



Dawning is One of Mainstreams in Feilds of Chinese's Oil Exploitation



Dawning 4000 helps to fly Shenzhou Spaceship









### Agenda

- Background
- Our Research
  - Research Work Overview
  - Recent Papers
- Future Work



## **HPC versus HTC**

**Conventional** 

Now

**FLOPS** 

d

Throughput

erfornance quirement

Conventionally, HTC systems were implemented by HPC infrastructures. As requirements of throughput, energy-efficiency, scalability and reliability are increasing in emerging HTC systems, conventional wisdom is no longer suitable for

next-generation data-center computing.

gh ghput altiple ks

ghmance ingle sk

中国科学性计算技术研究的 PISTITUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SCIENCES

pe

# **Expected Contribution: HTC Microprocessor**

- Kilo-Thread running on a chip
  - To apply a new 973 project

| Processor                | # of Threads | Microarchitecture                                                     |  |
|--------------------------|--------------|-----------------------------------------------------------------------|--|
| AMD Opteron              | 12           | 12 cores                                                              |  |
| Intel Xeon               | 8            | 2~8 cores                                                             |  |
| Intel SCC                | 48           | 48 cores                                                              |  |
| IBM Power7               | 32           | 8cores, 4-way multithreading                                          |  |
| IBM Wire-Speed Processor | 64           | 16 cores. 4-way multithreading, special-purpose hardware acceleration |  |
| Sun UltraSparc T2        | 64           | 8 cores, 8-way multithreading                                         |  |
| Tilera TILEPro           | 64           | 64 cores                                                              |  |
| HTC Processor of ICT     | 1024         | 1024 threads on a chip                                                |  |



## **Thanks**

